5,496 research outputs found

    The WISE gamma-ray strip parametrization: the nature of the gamma-ray Active Galactic Nuclei of Uncertain type

    Full text link
    Despite the large number of discoveries made recently by Fermi, the origins of the so called unidentified gamma-ray sources remain unknown. The large number of these sources suggests that among them there could be a population that significantly contributes to the isotropic gamma-ray background and is therefore crucial to understand their nature. The first step toward a complete comprehension of the unidentified gamma-ray source population is to identify those that can be associated with blazars, the most numerous class of extragalactic sources in the gamma-ray sky. Recently, we discovered that blazars can be recognized and separated from other extragalactic sources using the infrared (IR) WISE satellite colors. The blazar population delineates a remarkable and distinctive region of the IR color-color space, the WISE blazar strip. In particular, the subregion delineated by the gamma-ray emitting blazars is even narrower and we named it as the WISE Gamma-ray Strip (WGS). In this paper we parametrize the WGS on the basis of a single parameter s that we then use to determine if gamma-ray Active Galactic Nuclei of the uncertain type (AGUs) detected by Fermi are consistent with the WGS and so can be considered blazar candidates. We find that 54 AGUs out of a set 60 analyzed have IR colors consistent with the WGS; only 6 AGUs are outliers. This result implies that a very high percentage (i.e., in this sample about 90%) of the AGUs detected by Fermi are indeed blazar candidates.Comment: 22 pages, 13 figures, Astrophysical Journal in pres

    Infrared Colors of the gamma-ray detected blazars

    Full text link
    Blazars constitute the most enigmatic class of extragalactic gamma-ray sources, and their observational features have been ascribed to a relativistic jet closely aligned to the line of sight. They are generally divided in two main classes: the BL Lac objects (BL Lacs) and the Flat Spectrum Radio Quasars (FSRQs). In the case of BL Lacs the double bumped spectral energy distribution (SED) is generally described by the Synchrotron Self Compton (SSC) emission, while for the FSRQs it is interpreted as due to External Compton (EC) emission. Recently, we showed that in the [3.4]-[4.6]-[12] micron color- color diagram the blazar population covers a distinct region (i.e., the WISE blazar Strip, WBS), clearly separated from the other extragalactic sources that are dominated by thermal emission. In this paper we investigate the relation between the infrared and gamma-ray emission for a subset of confirmed blazars from the literature, associated with Fermi sources, for which WISE archival observations are available. This sample is a proper subset of the sample of sources used previously, and the availability of Fermi data is critical to constrain the models on the emission mechanisms for the blazars. We found that the selected blazars also lie on the WISE blazar Strip covering a narrower region of the infrared color-color planes than the overall blazars population. We then found an evident correlation between the IR and gamma-ray spectral indices expected in the SSC and EC frameworks. Finally, we determined the ratio between their gamma-ray and infrared fluxes, a surrogate of the ratio of powers between the inverse Compton and the synchrotron SED components, and used such parameter to test different emitting scenarios blazars.Comment: 15 pages, 14 figure, accepted for publication in ApJ, to appear in 2012 March 20 editio

    X-ray spectral curvature of High Frequency Peaked BL Lacs: a predictor for the TeV flux

    Full text link
    Most of the extragalactic sources detected at TeV energies are BL Lac objects. They belong to the subclass of "high frequency peaked BL Lacs" (HBLs) exhibiting spectral energy distributions with a lower energy peak in the X-ray band; this is widely interpreted as synchrotron emission from relativistic electrons. The X-ray spectra are generally curved, and well described in terms of a log-parabolic shape. In a previous investigation of TeV HBLs (TBLs) we found two correlations between their spectral parameters. (1) The synchrotron peak luminosity L_p increases with its peak energy E_p; (2) the curvature parameter b decreases as E_p increases. The first is consistent with the synchrotron scenario, while the second is expected from statistical/stochastic acceleration mechanisms for the emitting electrons. Here we present an extensive X-ray analysis of a sample of HBLs observed with XMM-Newton and SWIFT but undetected at TeV energies (UBLs), to compare their spectral behavior with that of TBLs. Investigating the distributions of their spectral parameters and comparing the TBL X-ray spectra with that of UBLs, we develop a criterion to select the best HBLs candidates for future TeV observations.Comment: 25 pages, 6 figures, Astrophysical Journal publishe

    FR0CAT: a FIRST catalog of FR0 radio galaxies

    Get PDF
    With the aim of exploring the properties of the class of FR0 radio galaxies, we selected a sample of 108 compact radio sources, called FR0CAT, by combining observations from the NVSS, FIRST, and SDSS surveys. The catalog includes sources with z≤0.05\leq 0.05, with a radio size ≲\lesssim 5 kpc, and with an optical spectrum characteristic of low-excitation galaxies. Their 1.4-GHz radio luminosities range 1038≲νL1.4≲104010^{38} \lesssim \nu L_{1.4} \lesssim 10^{40} erg/s. The FR0CAT hosts are mostly (86%) luminous (−21≳Mr≳−23-21 \gtrsim M_r \gtrsim -23) red early-type galaxies with black hole masses 108≲MBH≲109M⊙10^8 \lesssim M_{\rm BH} \lesssim 10^9 M_\odot: similar to the hosts of FRI radio galaxies, but they are on average a factor ∼\sim1.6 less massive. The number density of FR0CAT sources is ∼\sim5 times higher than that of FRIs, and thus they represent the dominant population of radio sources in the local Universe. Different scenarios are considered to account for the smaller sizes and larger abundance of FR0s with respect to FRIs. An age-size scenario that considers FR0s as young radio galaxies that will all eventually evolve into extended radio sources cannot be reconciled with the large space density of FR0s. However, the radio activity recurrence, with the duration of the active phase covering a wide range of values and with short active periods strongly favored with respect to longer ones, might account for their large density number. Alternatively, the jet properties of FR0s might be intrinsically different from those of the FRIs, the former class having lower bulk Lorentz factors, possibly due to lower black hole spins. Our study indicates that FR0s and FRI/IIs can be interpreted as two extremes of a continuous population of radio sources that is characterized by a broad distribution of sizes and luminosities of their extended radio emission, but shares a single class of host galaxies.Comment: 11 pages, 6 figures, accepted for publication on A&

    FRICAT: A FIRST catalog of FRI radio galaxies

    Get PDF
    We built a catalog of 219 FRI radio galaxies (FRIs), called FRICAT, selected from a published sample and obtained by combining observations from the NVSS, FIRST, and SDSS surveys. We included in the catalog the sources with an edge-darkened radio morphology, redshift ≤0.15\leq 0.15, and extending (at the sensitivity of the FIRST images) to a radius rr larger than 30 kpc from the center of the host. We also selected an additional sample (sFRICAT) of 14 smaller (10 <r<<r< 30 kpc) FRIs, limiting to z<0.05z<0.05. The hosts of the FRICAT sources are all luminous (−21≳Mr≳−24-21 \gtrsim M_r \gtrsim -24), red early-type galaxies with black hole masses in the range 108≲MBH≲3×109M⊙10^8 \lesssim M_{\rm BH} \lesssim 3\times10^9 M_\odot; the spectroscopic classification based on the optical emission line ratios indicates that they are all low excitation galaxies. Sources in the FRICAT are then indistinguishable from the FRIs belonging to the Third Cambridge Catalogue of Radio Sources (3C) on the basis of their optical properties. Conversely, while the 3C-FRIs show a strong positive trend between radio and [OIII] emission line luminosity, these two quantities are unrelated in the FRICAT sources; at a given line luminosity, they show radio luminosities spanning about two orders of magnitude and extending to much lower ratios between radio and line power than 3C-FRIs. Our main conclusion is that the 3C-FRIs just represent the tip of the iceberg of a much larger and diverse population of FRIs.Comment: 34 pages, 8 figures, 1 table, 1 appendix,accepted for publication in A&A, pre-proof versio

    Time properties of the the rho-class burst of the microquasar GRS 1915+105 observed with BeppoSAX in April 1999

    Get PDF
    We present a temporal analysis of a BeppoSAX observation of GRS 1915+105 performed on April 13, 1999 when the source was in the rho class, which is characterised by quasi-regular bursting activity. The aim of the present work is to confirm and extend the validity of the results obtained with a BeppoSAX observation performed on October 2000 on the recurrence time of the burst and on the hard X-ray delay. We divided the entire data set into several series, each corresponding to a satellite orbit, and performed the Fourier and wavelet analysis and the limit cycle mapping technique using the count rate and the average energy as independent variables. We found that the count rates correlate with the recurrence time of bursts and with hard X-ray delay, confirming the results previously obtained. In this observation, however, the recurrence times are distributed along two parallel branches with a constant difference of 5.2+/-0.5 s.Comment: Accepted for publication in Section 7. Stellar structure and evolution of Astronomy and Astrophysic

    Spectral Hardening of Large Solar Flares

    Full text link
    RHESSI observations are used to quantitatively study the hard X-ray evolution in 5 large solar flares selected for spectral hardening in the course of the event. The X-ray bremsstrahlung emission from non-thermal electrons is characterized by two spectroscopically distinct phases: impulsive and gradual. The impulsive phase usually consists of several emission spikes following a soft-hard-soft spectral pattern, whereas the gradual stage manifests itself as spectral hardening while the flux slowly decreases. Both the soft-hard-soft (impulsive) phase and the hardening (gradual) phase are well described by piecewise linear dependence of the photon spectral index on the logarithm of the hard X-ray flux. The different linear parts of this relation correspond to different rise and decay phases of emission spikes. The temporal evolution of the spectra is compared with the configuration and motion of the hard X-ray sources in RHESSI images. These observations reveal that the two stages of electron acceleration causing these two different behaviors are closely related in space and time. The transition between the impulsive and gradual phase is found to be smooth and progressive rather than abrupt. This suggests that they arise because of a slow change in a common accelerator rather than being caused by two independent and distinct acceleration processes. We propose that the hardening during the decay phase is caused by continuing particle acceleration with longer trapping in the accelerator before escape.Comment: accepted by Ap

    SSC radiation in BL Lac sources, the end of the tether

    Full text link
    The synchrotron-self Compton (SSC) radiation process is widely held to provide a close representation of the double peaked spectral energy distributions from BL Lac Objects (BL Lacs), which are marked by non-thermal beamed radiations, highly variable on timescales of days or less. Their outbursts in the gamma ray relative to the optical/X rays might be surmised to be enhanced in BL Lacs as these photons are upscattered via the inverse Compton (IC) process. From the observed correlations among the spectral parameters during optical/X-ray variations we aim at predicting corresponding correlations in the gamma-ray band, and the actual relations between the gamma-ray and the X-ray variability consistent with the SSC emission process. We start from the homogeneous single-zone SSC source model, with log-parabolic energies distributions of emitting electron as required by the X-ray data of many sources. We find relations among spectral parameters of the IC radiation in both the Thomson (for Low energy BL Lacs) and the Klein-Nishina regimes (mainly for High energy BL Lacs) and we compute how variability is driven by a smooth increase of key source parameters, primarily the root mean square electron energy. The single component SSC source model in the Thomson regime turns out to be adequate for many LBL sources. However, the simple model meets its limits with the fast/strong flares recently reported for a few sources in the TeV range; these require sudden accelerations of emitting electrons in a second source component.Comment: 12 pages, 2 tables, 8 figure
    • …
    corecore